

Available online at www.sciencedirect.com



Journal of the European Ceramic Society 26 (2006) 2111-2115

www.elsevier.com/locate/jeurceramsoc

# Low-temperature sintering and microwave dielectric characteristics of Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> ceramics

Jung-A. Lee, Joon-Hyung Lee, Jeong-Joo Kim\*

Department of Inorganic Materials Engineering, Kyungpook National University, Daegu 702-701, Korea

Available online 2 November 2005

### Abstract

The effect of  $B_2O_3$  and  $BaB_2O_4$  additions on the low-temperature sintering and the microwave dielectric characteristics of  $Ba_2Ti_9O_{20}$  have been investigated. The amounts of  $B_2O_3$  and  $BaB_2O_4$  were varied from 1 to 10 wt.% and the green compacts were sintered in the temperature range of 900–1100 °C for 2 h. As the amount of  $B_2O_3$  increased, the bulk density decreased. In contrast to  $B_2O_3$  addition, the density increased with the amount of  $BaB_2O_4$ . From the X-ray analysis of the sintered specimens, it was found that the borides of  $B_2O_3$  and  $BaB_2O_4$  promoted the formation of  $Ba_2Ti_9O_{20}$  phase. Second phases of  $BaTi(BO_3)_2$  and  $TiO_2$  were observed when  $B_2O_3$  was added. When  $BaB_2O_4$  was added, however,  $TiO_2$  was not observed regardless of the amount of  $BaB_2O_4$ . Dielectric characteristics were also examined and discussed in correlation with the densification, microstructure, and the second phase development.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Sintering; Microstructure-final; Dielectric properties; Borides; Ba2Ti9O20

## 1. Introduction

With recent progress in microwave telecommunication and satellite broadcasting industries, the miniaturization of dielectric devices such as band pass filters, duplexers and resonators has been a major requirement for volume efficiency. For the fabrication of miniaturized devices, multilayer co-firing process became an indispensable technology. Since most of the microwave dielectric ceramics usually need high sintering temperature and soaking time for densification, they are not compatible with the co-firing process.

Among the compounds in the BaO–TiO<sub>2</sub> system, Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> possesses an excellent microwave dielectric characteristics of high quality factor (Q = 8000 at 4 GHz), moderate dielectric constant ( $\varepsilon_r = 40$ ) and low-temperature coefficient of resonant frequency (0 ppm/°C). Because of these superior characteristics of Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub>, a number of researches have been conducted. However, pure Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> is difficult to be obtained through the general solid-state reaction process even at high temperatures around 1300–1400 °C.<sup>1,2</sup> Moreover, Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> is hardly densified.

0955-2219/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.09.066 In order to reduce the sintering temperature of microwave dielectrics, liquid phase sintering has been frequently employed because liquid phase provides faster diffusion paths and low sintering temperature, which promote reaction and densification. Several studies have shown that the addition of  $B_2O_3$  has the advantages of lowering sintering temperatures and improving dielectric properties of  $Ba_2Ti_9O_{20}$ .<sup>3,4</sup> It was also reported that  $B_2O_3$  addition could enhance the formation of  $Ba_2Ti_9O_{20}$ . However, chemical reaction between the glass and ceramics should be considered because reaction induced compositional change or development of second phases might deteriorate the dielectric properties.

In this study, two kinds of boride liquid former— $B_2O_3$  and  $BaB_2O_4$ —were added in order to enhance the formation of the  $Ba_2Ti_9O_{20}$  phase. The effect on densification, phase development, microstructural evolution and microwave dielectric characteristics was also examined and compared.

## 2. Experimental

 $Ba_2Ti_9O_{20}$  was synthesized through the conventional solidstate reaction process using high-purity raw materials of BaCO<sub>3</sub> (99.95%) and TiO<sub>2</sub> (99.9%). The weighed powders were mixed for 16 h in a polyethylene bottle with zirconia balls and ethanol. After drying, the powders were calcined at 1200 °C for 2 h. The

<sup>\*</sup> Corresponding author. Tel.: +82 53 950 5635; fax: +82 53 950 5645. *E-mail address:* jjkim@knu.ac.kr (J.-J. Kim).

sintering aids of B<sub>2</sub>O<sub>3</sub> and BaB<sub>2</sub>O<sub>4</sub> were added to Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> and the amount was varied from 1 to 10 wt.%. BaB<sub>2</sub>O<sub>4</sub> was prepared using BaCO<sub>3</sub> and B<sub>2</sub>O<sub>3</sub> (99.9%) through a heat treatment at 1150 °C for 1 h in a Pt crucible. Calcined Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> and additives of B<sub>2</sub>O<sub>3</sub> and BaB<sub>2</sub>O<sub>4</sub> were dry-mixed for 24 h and sintered in the range of 900–1100 °C for 2 h. X-ray diffraction (M03XHF, Mac Science, Japan) analysis was carried out for phase identification of the sintered specimens. The microstructure of the specimens was observed using a scanning electron microscope (JEOL, JML5400, Japan). Microwave dielectric characteristics were measured by the Hakki–Coleman dielectric resonator method,<sup>5</sup> using a network analyzer (Agilent 8719ES S-parameter, USA).

### 3. Result and discussion

Fig. 1 shows the X-ray diffraction patterns and SEM morphology of powders from raw material (BaCO<sub>3</sub>:TiO<sub>2</sub> = 2:9) that are calcined at 1200 °C for 2 h. Single phase of Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> was not obtained and considerable amount of BaTi<sub>4</sub>O<sub>9</sub> phase coexisted. It is known that Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> single phase is not easily obtained by the routine solid-state reaction method.

The temperature dependence of the phase development with the boride additives was examined. Fig. 2 shows the X-ray



Fig. 1. (a) X-ray diffraction patterns of powders from raw material (BaCO<sub>3</sub>:TiO<sub>2</sub> = 2:9) that were calcined at 1200  $^{\circ}$ C for 2h and (b) its SEM morphology.



Fig. 2. X-ray diffraction patterns of sintered specimens with 9 wt.% of (a)  $B_2O_3$ and (b)  $BaB_2O_4$  as a function of sintering temperature (( $\bigcirc$ )  $BaTi(BO_3)_2$ ; ( $\bullet$ ) TiO<sub>2</sub>; ( $\blacksquare$ )  $Ba_2Ti_9O_{20}$ ; ( $\square$ )  $BaTi_4O_9$ ).

diffraction patterns of sintered specimens with 9 wt.% of B<sub>2</sub>O<sub>3</sub> and BaB2O4 as a function of sintering temperature. In the case of B<sub>2</sub>O<sub>3</sub> addition, three major phases such as Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub>, BaTi(BO<sub>3</sub>)<sub>2</sub> and TiO<sub>2</sub> coexisted at the sintering temperature of 800 °C. The intensity of the TiO<sub>2</sub> and BaTi(BO<sub>3</sub>)<sub>2</sub> phases increased with the increase of sintering temperature and the Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> phase remained as a minor phase. In the case of the specimen sintered at 800 °C with BaB<sub>2</sub>O<sub>4</sub> addition, no considerable change in phase evolution was observed when compared with the calcined powders. However, as the sintering temperature increased, the dominant BaTi<sub>4</sub>O<sub>9</sub> phase produced at the low sintering temperature of 800 °C disappeared and the Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> phase was mainly obtained with a minor amount of BaTi(BO<sub>3</sub>)<sub>2</sub>. Note that TiO<sub>2</sub> phase was not produced when BaB<sub>2</sub>O<sub>4</sub> was added. From this experimental result, it is confirmed that chemical reaction of  $B_2O_3$  at low temperature is faster than that of BaB<sub>2</sub>O<sub>4</sub> probably due to the difference in the melting temperatures of 450 and 899 °C for B<sub>2</sub>O<sub>3</sub> and BaB<sub>2</sub>O<sub>4</sub>, respectively. Another notable thing is that the synthesis of Ba2Ti9O20 phase is promoted at low and high temperatures when B<sub>2</sub>O<sub>3</sub> and BaB<sub>2</sub>O<sub>4</sub> were added, respectively.

The volume fraction of the phases in the specimen sintered at  $1050 \,^{\circ}$ C for 2 h as a function of  $B_2O_3$  and  $BaB_2O_4$  content is



Fig. 3. Change in the volume fraction of the phases in the samples sintered at  $1050 \,^{\circ}$ C for 2 h as a function of the amount of (a)  $B_2O_3$  and (b)  $BaB_2O_4$ .

shown in Fig. 3. Because the X-ray diffraction intensity can be used to estimate the volume fraction of the phases, the results were determined using the integrated X-ray diffraction intensity of the major peak of the respective phases. As the addition of  $B_2O_3$  increased, the  $Ba_2Ti_9O_{20}$  phase greatly decreased and both the  $BaTi(BO_3)_2$  and  $TiO_2$  phases increased. In contrast, when  $BaB_2O_4$  was added, a high percentage of  $Ba_2Ti_9O_{20}$ phase was obtained and was nearly independent of the amount of  $BaB_2O_4$ .

Concerning the phase development process in this system,  $B_2O_3$  liquid phase will be produced during the sintering process at elevated temperatures. When BaTi<sub>4</sub>O<sub>9</sub> and Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> grains are surrounded by B2O3 liquid, Ba and Ti ions will be concurrently dissolved out into  $B_2O_3$  melts from  $BaTi_4O_9$ and Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> grains and then forms Ba-Ti-B-O glass. In the Ba-Ti-B-O glass, B and Ba component acts as glass network former and modifier, respectively. However, because the solubility of Ba in B<sub>2</sub>O<sub>3</sub> glass is higher than that of Ti, more Ba will be dissolved out from the BaTi<sub>4</sub>O<sub>9</sub> and Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub>, which will eventually result in the formation of  $TiO_2$  and Ba-rich  $B_2O_3$ glasses.<sup>6,7</sup> At the same time, another reaction between the solid grains and Ba-rich B<sub>2</sub>O<sub>3</sub> glass will be proceeded that leads to the formation of the BaTi(BO<sub>3</sub>)<sub>2</sub>. Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> phase also can be produced through the reaction between BaTi<sub>4</sub>O<sub>9</sub> and Ba-rich  $B_2O_3$  glass. On the other hand, when  $BaB_2O_4$  is added, less Bawill be dissolved out from the solid grains comparing to the case of B<sub>2</sub>O<sub>3</sub> addition because BaB<sub>2</sub>O<sub>4</sub> can be considered as a material that Ba component already dissolved in B<sub>2</sub>O<sub>3</sub>. In this case, no TiO<sub>2</sub> will be produced but BaTi(BO<sub>3</sub>)<sub>2</sub> will be produced as observed in Fig. 2b.

Fig. 4 shows the bulk density and porosity of specimens sintered at 1050 °C for 2 h with different amounts of B<sub>2</sub>O<sub>3</sub> and BaB<sub>2</sub>O<sub>4</sub>. Bulk densities of the specimens increased with the sintering temperature and the density of the specimens with BaB<sub>2</sub>O<sub>4</sub> addition was higher than that of B<sub>2</sub>O<sub>3</sub> addition. The increase of B<sub>2</sub>O<sub>3</sub> from 1 to 9 wt.% decreased the bulk density from  $4.2 \pm 0.1$  to  $3.3 \pm 0.1$  g/cm<sup>3</sup> and increased the porosity of sintered specimens. When considering the theoretical densities of Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> (4.6 g/cm<sup>3</sup>), BaTi(BO<sub>3</sub>)<sub>2</sub> (4.2 g/cm<sup>3</sup>) and TiO<sub>2</sub>



Fig. 4. (a) Bulk density of  $Ba_2Ti_9O_{20}$  specimens as functions of temperature and the amount of  $B_2O_3$  and  $BaB_2O_4$ , (b) porosity of the specimens sintered at 1050 °C for 2 h as a function of the amount of  $B_2O_3$  and  $BaB_2O_4$ .

 $(4.2 \text{ g/cm}^3)$ , the increase of BaTi(BO<sub>3</sub>)<sub>2</sub> and TiO<sub>2</sub> phases also caused the decrease in the bulk density as the amount of B<sub>2</sub>O<sub>3</sub> increased. When the amount of BaB<sub>2</sub>O<sub>4</sub> is increased, the bulk density slowly increased. The addition of BaB<sub>2</sub>O<sub>4</sub> decreased the porosity and enhanced the densification of sintered specimen.

Microstructures of  $Ba_2Ti_9O_{20}$  with 9 wt.% of  $B_2O_3$  and BaB<sub>2</sub>O<sub>4</sub> sintered at 1050 °C for 2 h are shown in Fig. 5. The phases in the microstructure were identified with the energy dispersive spectroscopy (EDS). The SEM images indicate that large pores are produced in the specimen with B<sub>2</sub>O<sub>3</sub> while the addition of BaB<sub>2</sub>O<sub>4</sub> achieved high densification of specimen. During sintering over the eutectic temperature of  $B_2O_3$ , the melts of  $B_2O_3$ will soak into the solid skeleton of BaTi<sub>4</sub>O<sub>9</sub> and Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> grains leaving behind voids at the place where the  $B_2O_3$  existed. Because of the reaction between B<sub>2</sub>O<sub>3</sub> liquid and solid grains of BaTi<sub>4</sub>O<sub>9</sub> and Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub>, most of the B<sub>2</sub>O<sub>3</sub> melts disappeared and the liquid filling of pores is not available. Since large voids are not easily eliminated during sintering, pores are frequently produced as observed in Fig. 5a. Moreover, once rectangular shaped grains of BaTi(BO<sub>3</sub>)<sub>2</sub> is formed, densification through particle rearrangement process is almost impossible because the particles hinder moving and sliding of grains.



Fig. 5. Microstructures of  $Ba_2Ti_9O_{20}$  specimens sintered at  $1050\,^\circ C$  for 2 h with addition of (a)  $9\,wt.\%\,B_2O_3$  and (b)  $9\,wt.\%\,BaB_2O_4.$ 

The dielectric constants of specimens sintered at 1050 °C for 2 h with different amounts of B<sub>2</sub>O<sub>3</sub> and BaB<sub>2</sub>O<sub>4</sub> are shown in Fig. 6. As sintering temperature increased, the dielectric constant of specimens sintered with B2O3 gradually decreased from 32.9 to 30.1 with the amount of  $B_2O_3$ . In the case of BaB<sub>2</sub>O<sub>4</sub> added specimens, the dielectric constant slowly increased from 33.5 to 36.0 with the amount of additive. The change in dielectric constant with addition of B2O3 and BaB2O4 can be explained by the density of sintered specimens. The temperature coefficient of resonant frequency ( $\tau_f$ ) of the specimens revealed that the  $\tau_f$  increased from 3 to 11 with increase of B<sub>2</sub>O<sub>3</sub> from 1 to 7 wt.%. The increased  $\tau_f$  is believed to be caused from the generation of TiO2 which has high positive  $\tau_f$  value. Since B<sub>2</sub>O<sub>3</sub> hinders densification of the specimens, further increase of B<sub>2</sub>O<sub>3</sub> to 9 wt.% reduced the  $\tau_f$ . When BaB<sub>2</sub>O<sub>4</sub> is added, the  $\tau_f$  slowly decreased as the amount of BaBa<sub>2</sub>O<sub>4</sub> increased. Because more BaB<sub>2</sub>O<sub>4</sub> addition produced more BaTi(BO<sub>3</sub>)<sub>2</sub> phase in the specimen, it is thought that the BaTi(BO<sub>3</sub>)<sub>2</sub> phase probably has negative  $\tau_f$ . Concerning  $Q \times f$  values of the specimens, it decreased from 16,800 to 12,600 as the amount of  $BaB_2O_4$  increased from 1 to 9 wt.%. B<sub>2</sub>O<sub>3</sub> addition also showed a decreasing tendency with the values from 14,500 to 13,700 as the amount increased from 1 to 9 wt.%.



Fig. 6. Dielectric constant and temperature coefficient of resonant frequency of specimens sintered at 1050 °C for 2 h as a function of the amount of (a)  $B_2O_3$  and (b)  $BaB_2O_4$ .

#### 4. Conclusion

The chemical reaction of  $B_2O_3$  at low temperature is faster than that of  $BaB_2O_4$ .  $B_2O_3$  and  $BaB_2O_4$  addition promoted the synthesis of  $Ba_2Ti_9O_{20}$  phase at low temperatures. However, the amount of the second phases increased as the amount of boride additives increased. Even though the addition of  $BaB_2O_4$  contributed to the densification of the specimens through the liquid phase sintering,  $B_2O_3$  produced many large pores. The dielectric constant showed a close relationship with the porosity of the specimens, while the temperature coefficient of resonant frequency ( $\tau_f$ ) was dependent on the second phase.

## Acknowledgement

This work was supported by grant No. (R12-2002-005-01003-0) from the Basic Research Program of the Korea Science & Engineering Foundation.

#### References

 O'Bryan Jr., H. M. and Thomson, J., Temperature-dependent phase boundaries for BaTi<sub>4</sub>O<sub>9</sub> Ba<sub>4</sub>Ti<sub>13</sub>O<sub>30</sub> and Ba<sub>6</sub>Ti<sub>17</sub>O<sub>40</sub>. *J. Am. Ceram. Soc.*, 1985, 68, C70–C72.

- Negas, T., Yeager, G., Bell, S., Coats, N. and Minis, I., BaTi<sub>4</sub>O<sub>9</sub>/Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub>-based ceramics resurrected for modern microwave applications. *Am. Ceram. Soc. Bull.*, 1993, **72**, 80–89.
- Wang, S. G., Chiang, C. C., Wang, C. H. and Chu, J. P., Phase stability of B<sub>2</sub>O<sub>3</sub>-added Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> ceramic: processing effects. *J. Mater. Res.*, 2003, 18, 201–207.
- Wang, S. G., Chiang, C. C., Wang, C. H. and Chu, J. P., Effects of B<sub>2</sub>O<sub>3</sub> on the phase stability of Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> microwave ceramic. *J. Am. Ceram. Soc.*, 2002, **85**, 1619–1621.
- Hakki, B. W. and Coleman, P. D., A dielectric resonator method of measuring inductive capacities in the millimeter range. *IRE Trans. Microwave Theory Tech.*, 1960, **MTT-8**, 402–410.
- Kuromitsu, Y., Wang, S. F., Yoshikawa, S. and Newnham, R. E., Evolution of interfacial microstructure between barium titanate and binary glasses. J. Am. Ceram. Soc., 1994, 77, 852–856.
- 7. Hirata, A. and Yamaguchi, T., Interfacial reaction of BaTiO<sub>3</sub> ceramics with PbO–B<sub>2</sub>O<sub>3</sub> glasses. J. Am. Ceram. Soc., 1997, **80**, 79–84.